Tissue-Specific Splicing of Disordered Segments that Embed Binding Motifs Rewires Protein Interaction Networks
نویسندگان
چکیده
Alternative inclusion of exons increases the functional diversity of proteins. Among alternatively spliced exons, tissue-specific exons play a critical role in maintaining tissue identity. This raises the question of how tissue-specific protein-coding exons influence protein function. Here we investigate the structural, functional, interaction, and evolutionary properties of constitutive, tissue-specific, and other alternative exons in human. We find that tissue-specific protein segments often contain disordered regions, are enriched in posttranslational modification sites, and frequently embed conserved binding motifs. Furthermore, genes containing tissue-specific exons tend to occupy central positions in interaction networks and display distinct interaction partners in the respective tissues, and are enriched in signaling, development, and disease genes. Based on these findings, we propose that tissue-specific inclusion of disordered segments that contain binding motifs rewires interaction networks and signaling pathways. In this way, tissue-specific splicing may contribute to functional versatility of proteins and increases the diversity of interaction networks across tissues.
منابع مشابه
Alternative splicing of intrinsically disordered regions and rewiring of protein interactions.
Alternatively spliced protein segments tend to be intrinsically disordered and contain linear interaction motifs and/or post-translational modification sites. An emerging concept is that differential inclusion of such disordered segments can mediate new protein interactions, and hence change the context in which the biochemical or molecular functions are carried out by the protein. Since genes ...
متن کاملConstruction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans
We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...
متن کاملDisordered Binding Regions and Linear Motifs—Bridging the Gap between Two Models of Molecular Recognition
Intrinsically disordered proteins (IDPs) exist without the presence of a stable tertiary structure in isolation. These proteins are often involved in molecular recognition processes via their disordered binding regions that can recognize partner molecules by undergoing a coupled folding and binding process. The specific properties of disordered binding regions give way to specific, yet transien...
متن کاملDynamic protein-DNA recognition: beyond what can be seen.
Traditionally, specific DNA recognition is thought to rely on static contacts with the bases or phosphates. Recent results, however, indicate that residues far outside the binding context can crucially influence selectivity or binding affinity via transient, dynamic interactions with the DNA binding interface. These regions usually do not adopt a well-defined structure, even when bound to DNA, ...
متن کاملSystematic Discovery of New Recognition Peptides Mediating Protein Interaction Networks
Many aspects of cell signalling, trafficking, and targeting are governed by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or "linear motif" (e.g., SH3 binding to PxxP). Many domains are known, though comparatively few linear motifs have been discovered. Their short length (three to eight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 46 شماره
صفحات -
تاریخ انتشار 2012